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Abstract

Combining the strengths of coefficient alpha and maximized reliability coef-

ficients, this paper introduces an estimator based on a maximization method

that utilizes a covariance matrix to obtain a subset of split-half reliabilities.

The mean of the vector of split-half reliabilities can then be used to estimate

reliability. Only the maximum of this vector (Guttman’s maximal λ4) has

been explored previously despite evidence that it may overestimate reliability

in small samples. Computation theory, algorithm and code based in R are

provided for computation for the estimator. Simulations were used to assess

the performance of the estimator in a variety of data structures while also

allowing direct comparisons to the greatest lower bound, Mcdonald’s omega,

and coefficient alpha.

Keywords: Split-half, reliability, glb, omega, alpha
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Introduction

Estimating reliability has taken many forms since Spearman’s conceptual-

ization of errors in observation (Spearman, 1904). Despite the long history,

the field has struggled to find an estimator that is appropriate in realistic

settings. Although Cronbach’s (1951) piece on coefficient alpha is one of

the most heavily cited contributions to psychometric theory, the statistic is

often misused (Sijtsma, 2009a). Cronbach (1951) was able to prove that

coefficient alpha is the mean of all split-half reliabilities by making the strin-

gent assumptions that each of the items in the scale exhibit tau-equivalence

(items have equivalent factor loadings) and are unidimensional (Novick and

Lewis, 1967). When a scale meets these assumptions and the data is at a

population level of analysis, all split-half reliabilities will be equivalent. So

while one could attain the appropriate parameter by selecting the maximum

or minimum split-half reliability the mean is an unbiased estimator in a sam-

ple. Although valid, the assumptions made in the Cronbach’s (1951) proof

are often not met in realistic settings.

Guttman (1945) favored his λ4 reliability coefficient, a split-half reliability

estimate, because it is does not assume tau-equivalence or unidimensional-

ity. Guttman recommended splitting the test items in a way that maximizes

this estimate but did not provide a specific method for doing so. Neverthe-

less, multiple researchers have made developments in this regard over the

last 60 years. The greatest lower bound (ρ+), originally proposed by Bentler

(1972), posited that the largest reliability attainable is found by minimizing

the trace of the covariance matrix (the variances) while keeping the matrix
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positive semi-definite (all eigenvalues are non-negative). Maximized λ4 was

developed by Callender and Osburn (1977) and utilized an algebraic algo-

rithm for assigning items into halves with an equivalent number of items.

Mcdonald’s omega (ωt), an estimate of the total reliability of the scale, is

similar to Guttman’s (1945) λ6 and uses item’s uniquenesses to estimate the

error variance of the scale (Revelle, 2012).

Proper use of these reliability estimates has been a source of confusion and

contention. Sijtsma (2009a) recommended using (ρ+) despite the estimate’s

large positive bias in small and moderately large samples (ten Berge and

Socan, 2004) and it’s tendency to capitalizes on chance (Cronbach, 1988).

Instead, Revelle and Zinbarg (2009) suggested use of McDonald’s (1999)

ωt and presented evidence that estimates from ωt were higher than (ρ+).

Although ωt has not been studied explicitly in terms of bias, Revelle’s (2009)

results suggest that it also has a large postive bias. Also of note, Osburn

(2000) provided evidence that his maximized λ4 was consistently accurate in

parallel form, tau equivalent, congeneric, and different levels of heterogeneous

data factor solutions. However, this simulation was performed on population

covariance matrices and not with sampled data.

The ubiquity of Cronbach’s alpha (1951) and the numerous calls for use

of “better” reliability estimators (Revelle and Zinbarg, 2009; Sijtsma, 2009a;

Osburn, 2000; Callender and Osburn, 1977, 1979; Jackson and Agunwamba,

1977; Woodhouse and Jackson, 1977) provide indication that psychometri-

cians and researchers need a proper maximized reliability estimate. The

most recently developed techniques (e.g. McDonald (1978); Jackson and

Agunwamba (1977); Osburn (2000)) for calculating reliability exhibit bias
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and will be ignored until a bias corrected method is proposed and validated

(Yaun and Bentler, 2002; ten Berge and Socan, 2004; Sijtsma, 2009a,b; Rev-

elle and Zinbarg, 2009). Fortunately, this is an attainable goal.

By combining the logic of coefficient α and maximized reliability coeffi-

cients the strengths of both techniques may be attained. Generally speaking a

maximization procedure could yield a subset of maximized split-half reliabil-

ities. One could then take the mean of the split-half reliabilities to minimize

capitalization on error. The major purpose of this paper is to introduce the

method behind the computation of a statistic and provide evidence that it is

based on minimal assumptions and exhibits a low level of bias.

The layout of the paper will proceed as follows. The computational the-

ory of the estimator is described as well as instructions for implementation.

The subsequent section includes empirical results observed from a simulation

study. The paper is concluded with a discussion and code for use in R (R

Development Core Team, 2011) for direct calculation in Appendix A.

Computational Theory

Osburn (2000) suggested using an estimation procedure for calculating maxi-

mized λ4. Specifically, he advised finding the largest covariance and splitting

those two items onto different halves (paired-item separations) and then it-

erating this procedure, ignoring previously split items, until all of the items

have been placed on one of the splits. Although, Osburn only discussed cal-

culating λ4 for a single split, it can actually be calculated on every possible

split that maintains the paired-item separations. This is the maximization
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procedure provides a method for obtaining a subset of maximized λ4s. For

the direct calculation of λ4 Equation 1 can be used. We will let Σ be the

p ∗ p covariance matrix for the analysis. Let t be a vector of length p with

elements 1 or -1 that indicate the split each item is placed within and let 1

be the unit vector of length p.

λ4 = 1 −
(
t′Σt

1′Σ1

)
(1)

By replicating this calculation on a single set of items several times a

vector of λ4s can be obtained that also maintain the inital paired-item sep-

arations (compare Table 1 to Table 2). It is evident that these splits will

provide different values in a sample while also fitting to the rules of maxi-

mization defined above.

Table 1: Original Split

Half 1 Half 2
X1 Y1

X2 Y2

X3 Y3

X4 Y4

Table 2: Equivalent Split

Half 1 Half 2
X1 Y1

Y2 X2

X3 Y3

Y4 X4

Finally, Equation 1 is performed on every t vector that maintains the

inter-item separations. Once a vector τ is made of all the possible λ4 esti-

mates, the mean or median of the vector can be used as the final estimate of

reliability. The maximum of this vector would be the same as maximum λ4.

λ4(C) = mean(λ̂41:n , λ̂42:n , λ̂43:n ...λ̂4n:n) = mean(τ) (2)

The procedure for computing Covariance Maximized Lambda 4 (λ4(C)) is
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described below.

1. Find the largest covariance between two items and place those items

on separate splits.

2. Reiterate 1 while ignoring previously split items, thus creating a vector

t of -1, 1 elements.

3. Generate every combination of -1 and 1 elements for t that maintains

the paired-item separations.

4. Compute λ̂4 for each ti using Equation 1 creating a vector τ .

5. Take the mean or median of τ for λ4(C). If one desires Guttman’s

λ4(max) take the max of τ .

Simulation Method

To establish this new method for estimating reliability the method was tested

on simulated data and compared to other estimators. The simulations were

performed in R system for statistical computing (R Development Core Team,

2011). Three factor structures were simulated, parallel, tau-equivalent, and

congeneric, with either 1, 3, or 5 factors and 5 different sample sizes (50, 100,

400, 1000, and 2000). Each simulation included 500 samples yielding 500 es-

timates of the greatest lower bound (ρ+), McDonald’s Omega (ωt) (1999),

coefficient alpha (α) and covariance maximized lambda 4 (λ4(C)). McDon-

ald’s ωt was calculated using the factanal function from stats package in
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R which uses maximum likelihood. The equations for the estimators are

described below.

ρ+ = 1 − tr(Σ∗)

1′Σ1
=

1′Σ∗1

1′Σ1
(3)

Where Σ∗ is equivalent to Σ but the trace (tr) has been minimized.

ωt = 1 −
(∑

u2i
1′Σ1

)
(4)

Because ωt requires specification of the number of factors, the number of

eigenvalues greater than one was utilized to make that determination.

α =
1

n− 1

(
trΣ

1′Σ1

)
(5)

The population covariance structures were established using a confirma-

tory factor model Σ = ΛΦΛ′ + Ψ, where Ψ is a diagonal p ∗ p matrix of

error variances, Λ is a p ∗ n matrix of the measurement model and Φ is an

n ∗ n matrix of the correlations between the factors, where n is the num-

ber of factors. For simulation, the population covariance matrix was used in

the mvrnorm function from the MASS package in R. Population internal

consistency reliabilities are defined in Equation 6.

ρ =
1′ΛΦΛ′1

1′Σ1
= 1 − 1′Ψ1

1′Σ1
(6)

Models with more that 1 factor required specification of the correlations

between the factors via the Φ matrix from the confirmatory model. The Φ

matrices for the models were set up with 1s on the diagonal and .3s on the off
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diagonal specifying a correlation between all latent variables of .3. Shortened

examples of the confirmatory models for each factor structure are provided

below. For the multidimensional models a Φ matrix as described above was

included and the terms of this example were extended to account for the

increase in items and factors.

Parallel Models. The parallel models were designed with equal factor

loadings of .6 for each item and equal error variances of .62.

Σ1 =



.6

.6

.6

.6


∗
(

.6 .6 .6 .6

)
+



.62 0 0 0

0 .62 0 0

0 0 .62 0

0 0 0 .62


(7)

Tau-Equivalent Models. The tau-equivalent models also have equated fac-

tor loadings of .6 but have error variances of .62, .72, .82, and .92.

Σ2 =



.6

.6

.6

.6


∗
(

.6 .6 .6 .6

)
+



.62 0 0 0

0 .72 0 0

0 0 .82 0

0 0 0 .92


(8)

Congeneric. The congeneric models have different factor loadings for each

item of .5, .6, .7, and .8 and also have error variances of .62, .72, .82, and .92.
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Σ3 =



.5

.6

.7

.8


∗
(

.5 .6 .7 .8

)
+



.62 0 0 0

0 .72 0 0

0 0 .82 0

0 0 0 .92


(9)

These models were chosen for proper comparisons to existing estimators

known strengths.

The expected values of each statistic were tested for biasedness and con-

sistentency. Bias was calculated by Equation 10 where ρ̂ is a general term

for the expected value of the reliability statistics.

θ = ρ− ρ̂ (10)

Consistency S was computed by taking the standard deviation of the

sample estimates ρ̂∗ of each statistic.

Consistency = sd(ρ̂∗) (11)

The MSE, the second moment of the error, was computed with Equation

12 and provides a way to compare statistics that differ on biasedness and

consistency.

MSE = σ2 + θ2 (12)

The results from the simulations are described in the following section.
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Results

Parallel Models (Table 3). As expected α performs well with a very low

amount of bias in the unidimensional factor structure but has a large nega-

tive bias in the multidimensional models. Also as expected, ρ+ exhibits an

unacceptable level of bias for each model in sample sizes less than 1000. The

bias of ρ+ seems to increase as the number of factors/items increases. De-

spite the large amount of bias, ρ+’s estimates are consistent. Although λ4(C)

utilizes an unneccessary maximization step for the unidimensional case, it

exhibits a low level of bias and has either lower or equivalent consistency as

α. In the multidimensional cases λ4(C) has the lowest level of bias and MSE.

Also performing very well, ωt does not have a bias greater than .01 in any

of the factor structures. In summation, ωt and λ4(C) perform best and have

the lowest MSE in all of the models.

Tau-Equivalent Models (Table 4). The results from these models very closely

resemble the results from the parallel models. First, α performs well in the

unidimensional case but exhibits a large negative bias in the multidimen-

sional cases. Second, ρ+ exhibits a large positive bias that is as high as .10 in

the 5 factor model. Third, λ4(C) perfoms very well and has the lowest level

of bias and MSE in the multidimensional models. Lastly, ωt exhibits a bias

in sample sizes of 100 and smaller but has low consistency and MSE across

the three models.

Congeneric Models (Table 5). Although α performed reasonably well in

the parallel and tau-equivalent unidimensional models, ωt and λ4(C) have

an equivalent level or smaller bias, consistency, and MSE. Similar to the pre-
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vious models, ρ+ exhibits an unacceptable positive bias in samples smaller

than 1000.

Discussion

Recent changes have impacted the design and development of psychometric

tests. It seems that acheiving a test that satisfies assumptions of parallel

forms requires asking the same question 10 different ways. This methodol-

ogy is ineffective, repetitive for test respondents, and the resulting test may

have low predictive qualities. Different analytical techniques that explore

factor structures with a general factor in addition to specific factors with

a subset of the items both in an exploratory sense (Jennrich and Bentler,

2011, 2012) and a confirmatory sense (Holzinger and Swineford, 1937) are

becoming more commonly utilized. Because the field is moving in this direc-

tion a set of tools that offers more flexibility is needed. Specifically, there is

a need for an internal consistency reliability estimator for multidimensional

factor structures that does not exhibit a large bias. A theory building on the

ideas of Guttman and Osburn has been provided that establishes a modern

perspective on reliability estimation that corrects the issues of previous es-

timators. A computational methodology has been provided along with code

in R for direct computation. As expected ωt and λ4(C) outperformed ρ+ and

α in general. Nevertheless, α performed well in the unidimensional case, as

expected (Novick and Lewis, 1967). If one was attenuating correlations it

would be advantageous to utilize either ωt or λ4(C) as to not overattenuate.

In comparing ωt and λ4(C) across the different factor structures it is noticable
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that they provide similar results. Nevertheless, λ4(C) does not require prior

knowledge of the number of latent factors and demonstrates a lower level

of bias as the number of factors increases or when the sample size is small.

The bias of ρ+ found by previous researchers (Yaun and Bentler, 2002; ten

Berge and Socan, 2004; Sijtsma, 2009a,b; Revelle and Zinbarg, 2009; Li and

Bentler, 2011) was confirmed and increases as the number of items and/or

factors increase. λ4(C) also yields a marked improvement over ρ+ with a

smaller level of bias in all three populations. The computational methodol-

ogy relies heavily on a method described in Osburn (2000). The expansion

includes the generation of all possible split half relibilities that still maintain

inter-item separations from the maximization procedure. With a moderate

to large number of items calculation can be computationally extensive but

comparable to modern bootstrapping procedures. On a 2.66 GHz Intel Core

2 Duo MacBook Pro a dataset with 10,000 observations and 30 variables com-

putation time varied from .653 to .942 seconds. Further code developments

such as vectorization or use of different languages that handle computation

more quickly (e.g. Fortran or C) are also possibilities. It would also be

useful to compare results provided by taking the median of τ instead of the

mean. By using the median split it may be possible to use bootstrapping

with a specific λ4(C) to estimate confidence intervals while also cutting down

on computation. Issues such as this are will be the focus of my ongoing

research.
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Appendix A

cov.lambda4<-function (x, show.lambda4s = FALSE, show.splits = TRUE)

{

nvar <- dim(x)[2]

n <- dim(x)[1]

p <- dim(x)[2]

if (n == p)

sigma <- as.matrix(x)

else sigma <- var(x, use = "pairwise")

sigma.split <- as.data.frame(sigma)

sigma.split[upper.tri(sigma.split, diag = TRUE)] <- 0

sigma.split2 <- sigma - diag(sigma)

xy <- matrix(ncol = 2, nrow = nvar/2)

for (o in 1:(nvar/2)) {

x.m <- which(sigma.split == max(

sigma.split), arr.ind = TRUE)[1,]

xy[o, 1] <- x.m[1]

xy[o, 2] <- x.m[2]

sigma.split[(x.m[1]), ] <- -999999

sigma.split[(x.m[1])] <- -999999

sigma.split[(x.m[2])] <- -999999

sigma.split[(x.m[2]), ] <- -999999

}

Ahalf <- xy[, 1]

Bhalf <- xy[, 2]

items.seq <- seq(1:nvar)

lst <- c(Ahalf, Bhalf)

lftout <- which(items.seq %in% lst == FALSE)

if (length(c(Ahalf, Bhalf)) != length(items.seq)) {

Bhalf <- c(Bhalf, lftout)

}

Ani <- length(Ahalf)

Bni <- length(Bhalf)

Acombs <- bin.combs(Ani)

lencombs <- nrow(Acombs)

t1t.temp <- (as.numeric(items.seq %in% Ahalf) - 0.5) * 2

t1t.splits <- t(matrix(data = rep(t1t.temp, lencombs),

17



nrow = nvar, ncol = lencombs))

full <- cbind(Acombs, Acombs)

if (Ani != Bni) {

full <- cbind(full, rep(1, lencombs))

}

full[, c(Ahalf, Bhalf)] <- full[, seq(1:nvar)]

if (Ani != Bni) {

covt <- which(sigma.split2[lftout, ] == max(

sigma.split2[lftout, ]))

}

if (Ani != Bni) {

full[, lftout] <- -t1t.temp[covt]

}

t1t.matrix <- (full * t1t.splits)/2 + 0.5

t2.matrix <- (t(t1t.matrix) - 1) * -1

onerow <- rep(1, ncol(t1t.matrix))

onerow <- t(onerow)

onevector <- t(onerow)

l4.vect <- rep(NA, lencombs)

for (i in 1:lencombs) {

l4.vect[i] <- (4 * (t1t.matrix[i, ] %*% sigma %*%

t2.matrix[, i]))/(onerow %*% sigma) %*% onevector

}

if (show.splits == TRUE) {

sl4 <- sort(l4.vect)

Min.Split <- t1t.matrix[which(l4.vect == sl4[1]), ]

Median.Split <- t1t.matrix[which(l4.vect ==

sl4[round(lencombs/2)]), ]

Max.Split <- t1t.matrix[which(l4.vect ==

sl4[lencombs]), ]

Splits <- data.frame(Min.Split, Median.Split, Max.Split)

}

Max <- max(l4.vect)

Mean <- mean(l4.vect)

Median <- median(l4.vect)

Minimum <- min(l4.vect)

lambda4s <- lencombs

Items <- nvar

lambda4 <- data.frame(Mean, Max, Median, Minimum)

Analysis.Details <- data.frame(Items, lambda4s)

if (show.lambda4s == FALSE) {
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if (show.splits == TRUE) {

result <- list(lambda4 = lambda4,

Analysis.Details = Analysis.Details,

Splits = Splits)

}

else {

result <- list(lambda4 = lambda4,

Analysis.Details = Analysis.Details)

}

}

if (show.lambda4s == TRUE) {

if (show.splits == TRUE) {

result <- list(lambda4 = lambda4,

Analysis.Details = Analysis.Details,

lambda4s = l4.vect, Splits = Splits)

}

else {

result <- list(lambda4 = lambda4,

Analysis.Details = Analysis.Details,

lambda4s = l4.vect)

}

}

return(result)

}
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